Name_____

Evaluate the function at the given value of the independent variable and simplify.

Use the graph to find the indicated function value.

2) y = f(x). Find f(-2)

Use the graph to determine the function's domain and range.

3) _____

1) _____

2) _____

Use the graph of the given function to find any relative maxima and relative minima. State where f(x) increases and decreases

Find and simplify the difference quotient $\frac{f(x + h) - f(x)}{h}$, $h \neq 0$ for the given function.

5)
$$x^2 + 7x + 3$$
 5)

6)

Use the given conditions to write an equation for the line in slope-intercept form.

6) Passing through (2, 5) and (1, 8)

Begin by graphing the standard quadratic function $f(x) = x^2$. Then use transformations of this graph to graph the given function.

7)
$$g(x) = -\frac{1}{2}(x+2)^2 + 3$$

7) _____
 $(-10^{-3} + 5^{-4} + 2^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-4} + 0^{-2} + 4^{-6} + 8^{-6} + 0^{-2} + 4^{-6} + 8^{-6} + 0^{-2} + 4^{-6} + 8^{-6} + 0^{-2} + 10^{-2} + 4^{-6} + 8^{-6} + 0^{-2} + 10^{$

For the given functions f and g, find the indicated composition.

8)
$$f(x) = \frac{7}{x+4}$$
, $g(x) = \frac{4}{5x}$
(f \circ g)(x) 8)

Find the inverse of the one-to-one function.

9)
$$f(x) = \frac{3}{2x + 1}$$
 9) _____

Complete the square and write the equation in standard form. Then give the center and radius of the circle.

10) $10x + 25 + y^2 - 8y + 16 = 64$	10)
Find the product and write the result in standard form. 11) 8 - 3i)(-2 - 3i)	11)
Divide and express the result in standard form.	
12) <u> i</u>	12)
Solve the quadratic equation using the quadratic formula. Express the solution in standard form.	12)
$(3) 4x^{-} - 3x + 1 = 0$	
Find the zeros of the polynomial function.	
16) $x^3 + 4x^2 - 4x - 16$	16)
Divide using long division or synthetic division	
$\frac{3m^3 + 18m^2}{17} - 74m + 63$	17)
m + 9	
Find a rational zero of the polynomial function and use it to find all the zeros of the function.	
18) $x^3 - 8x^2$ 19x - 14	18)
Find the domain of the rational function.	
19) $h(x) = \frac{x+2}{x^2 - 49x}$	19)
Find the vertical asymptotes, if any, of the graph of the rational function.	
$20) - \frac{-64}{-15x + 54}$	20)

Find the horizontal asymptote, if any, of the graph of the rational function.

21) $g(x) = \frac{8x^2}{2x^2 + 1}$ 21) _____

Solve the polynomial inequality and graph the solution set on a number line. Express the solution set in interval notation.

22)

23)

22) $x^2 + 3x - 4 > 0$

Solve the exponential equation. Express the solution set in terms of natural logarithms.

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

24)
$$5^{\times +7} = 8$$
 24)

Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic expressions. Give the exact answer.

25) $\log_5 (x + 2) = -3$	25)
26) 2 ln (7x) = 18	26)

27) The formula A = 238e^{0.032t} models the population of a particular city, in thousands, t 27) years after 1998. When will the population of the city reach 317 thousand?

Find the exact value of the expression.

28) sin $\frac{-2\pi}{3}$	28)
29) sec $\frac{-5\pi}{4}$	29)

Find the exact value of the expression.

30)
$$\sin^{-1}\frac{\sqrt{2}}{2}$$
 30) _____

Find the exact value of the expression.

31) cos	$\sin^{-1}\frac{4}{5}$	31)	
Į	၂ ၁၂)	

Use a right triangle to write the expression as an algebraic expression. Assume that x is positive and in the domain of the given inverse trigonometric function.

Use a transformations to graph the function.

33) y = 2 cos
$$\frac{1}{2}$$
x + 2

Use the given information to find the exact value of the expression.

34) sin $\theta = \frac{15}{17}$, θ lies in quadrant I Find co	s 20. 34)
Find all solutions of the equation.	
35) $2\cos x - 1 = 0$	35)
Solve the equation on the interval [0, 2π).	
36) $\cos x + 2 \cos x \sin x = 0$	36)
Solve the equation on the interval [0, 2π).	
37) $2\cos^2 x + \sin x - 2 = 0$	37)

41) A vendor sells hot dogs and bags of potato chips. A customer buys 5 hot dogs and 4
bags of potato chips for \$15.50. Another customer buys 2 hot dogs and 5 bags of potato
chips for \$8.75. Find the cost of each item.

41) _____

5

32) _____

33)	
-----	--

Solve the system 42) x - 2y = 3

$$x^2 - xy = 20$$

Graph the solution set of the system of inequalities or indicate that the system has no solution.

42) _____

43) _____